Ray Kurzweil’s Dangerous Idea: The near-term inevitability of radical life extension and expansion

January 17, 2006

This is an excerpt of an article originally published on Edge January 1, 2006. Published with permission on KurzweilAI.net January 17, 2006.

My dangerous idea is the near-term inevitability of radical life extension and expansion. The idea is dangerous, however, only when contemplated from current linear perspectives.

First the inevitability: the power of information technologies is doubling each year, and moreover comprises areas beyond computation, most notably our knowledge of biology and of our own intelligence. It took 15 years to sequence HIV and from that perspective the genome project seemed impossible in 1990. But the amount of genetic data we were able to sequence doubled every year while the cost came down by half each year.

We finished the genome project on schedule and were able to sequence SARS in only 31 days. We are also gaining the means to reprogram the ancient information processes underlying biology. RNA interference can turn genes off by blocking the messenger RNA that express them. New forms of gene therapy are now able to place new genetic information in the right place on the right chromosome. We can create or block enzymes, the work horses of biology. We are reverse-engineering—and gaining the means to reprogram—the information processes underlying disease and aging, and this process is accelerating, doubling every year. If we think linearly, then the idea of turning off all disease and aging processes appears far off into the future just as the genome project did in 1990. On the other hand, if we factor in the doubling of the power of these technologies each year, the prospect of radical life extension is only a couple of decades away.

In addition to reprogramming biology, we will be able to go substantially beyond biology with nanotechnology in the form of computerized nanobots in the bloodstream. If the idea of programmable devices the size of blood cells performing therapeutic functions in the bloodstream sounds like far off science fiction, I would point out that we are doing this already in animals. One scientist cured type I diabetes in rats with blood cell sized devices containing 7 nanometer pores that let insulin out in a controlled fashion and that block antibodies. If we factor in the exponential advance of computation and communication (price-performance multiplying by a factor of a billion in 25 years while at the same time shrinking in size by a factor of thousands), these scenarios are highly realistic.

The apparent dangers are not real while unapparent dangers are real. The apparent dangers are that a dramatic reduction in the death rate will create over population and thereby strain energy and other resources while exacerbating environmental degradation. However we only need to capture 1 percent of 1 percent of the sunlight to meet all of our energy needs (3 percent of 1 percent by 2025) and nanoengineered solar panels and fuel cells will be able to do this, thereby meeting all of our energy needs in the late 2020s with clean and renewable methods. Molecular nanoassembly devices will be able to manufacture a wide range of products, just about everything we need, with inexpensive tabletop devices. The power and price-performance of these systems will double each year, much faster than the doubling rate of the biological population. As a result, poverty and pollution will decline and ultimately vanish despite growth of the biological population.

There are real downsides, however, and this is not a utopian vision. We have a new existential threat today in the potential of a bioterrorist to engineer a new biological virus. We actually do have the knowledge to combat this problem (for example, new vaccine technologies and RNA interference which has been shown capable of destroying arbitrary biological viruses), but it will be a race. We will have similar issues with the feasibility of self-replicating nanotechnology in the late 2020s. Containing these perils while we harvest the promise is arguably the most important issue we face.

Some people see these prospects as dangerous because they threaten their view of what it means to be human. There is a fundamental philosophical divide here. In my view, it is not our limitations that define our humanity. Rather, we are the species that seeks and succeeds in going beyond our limitations.

[Continued on Edge]